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Abstract. The scope and potential of the k. p total energy method introduced in a previous 
paper is further investigated. The method provides for the generation of rapid but approxi- 
mate solution of the Kohn-Sham equations at many k-points from the exact solution at a 
few k-points. The methodisapplied to three diverse aluminiumst~ctures and theerronare 
partitioned into those which are due to the h ' p method and those which are general to any 
finite sampling method. Bolh of the errors that are associated with any finite sampling 
technique are shown to be significant even for dense sampling of k-space. One of the k . p 
errors is shown to be insignificant. The other h .  p error is significant. However, a method is 
introduced which allows the magnitudeof the error to be reduced to the level of insignificance. 
The resulting h . p total energy method is shown to be immune from any additional errors 
beyond those associated with any finite sampling method. Thus it is a quick and accurate 
method for the calculation of absolurc totid energies. 

1. Introduction 

In principle a pseudopotential total energy calculation of an infinite solid within the 
density functional formalism involves an infinite number of electrons, each described 
by a solution of a Kohn-Sham equation (Kohn and Sham 1965). If the structure is 
periodic then one may label the infinity of Kohn-Sham eigenstates by a k-point index 
which takes all values within a finite and well defined volume of reciprocal space. 
Properties of a state such as the eigenvalue vary continuously and relatively slowly with 
respect to k-point index so that an infinite number of electrons may be represented by a 
finite number of electrons whose k-point index forms a grid within the first Brillouin 
zone of the structure concerned. 

In order to achieve this simplification even for aperiodic structures, one chooses to 
impose periodicity by choice of a suitable supercell. The precise number of k-points 
required for a given degree of convergence will vary from structure to structure. Semi- 
conductors and insulators may be adequately treated using a relatively small number of 
suitably chosen special k-points (Chadi and Cohen 1973), however, calculations on 
metals show that for these structures, significantly larger sets of k-points are required. 

In calculating energy differences between similar structures, errors due to insuf- 
ficiently dense sampling within the Brillouin zone tend to cancel (Cheng eta! 1987), but 
in comparingdissimilar structurese.g. a surface and bulk, the same degreeofcancellation 
will not be present. For both these reasons there is often a need to sample at a large 
number of k-points. However this is both time consuming and extremely demanding on 
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computer memory with the result that adequately converged results are often unob- 
tainable. 

In a previous paper (Robertson and Payne 1990), hereafter referred to as 1, we 
described a method which used exact solutions of the Kohn-Sham equations at a small 
number of k-points as a basis to generate quick and approximate solutions at a much 
larger number of other k-points. (Here and throughout the rest of the paper we use the 
word ‘exact’ to describe solutions of a given Hamiltonian in a full space of plane waves 
that are reciprocal lattice vectors of the structure and that have energy below a given 
cut-off. The word ‘inexact’ will refer to solutions obtained with a subspace of this space 
as is the case for instance in the k - p  method). The usefulness of this k . p  method was 
demonstrated by performingcalculations on FCC aluminium using a relatively small cut- 
off energy of 100 eV. The procedure was shown to be up to several orders of magnitude 
quicker than an exact solution,andsubject toanextraerrorofonly2% in thecalculation 
of certain energy differences. The figure of 2% is relatively small, reflecting the promise 
of the k . p  method, but was helped by a large degree of error cancellation between 
similar structures rather than being a truly low error in an absolute energy. 

I J Robertson and M C Payne 

This paper has three major purposes: 

(i) We show how to reduce any extra error in calculating eigenvalues by the k ‘ p  
method by up to two orders of magnitude so that they are reduced to the level of 
insignificance. This ensures that it is no longer necessary to rely on the error cancellations 
which are only present when comparing similar structures. 

(U) We show the general applicability of the k ‘ p  method by using it to calculate 
energies of aluminium in three diverse structures. These are the FCC structure, a line of 
atoms and a square lattice. 

(iii) We demonstrate that the effect of any error in the electronic charge density and 
potential due to the use of k . p eigenstates is insignificant. 

The combined effect of these three advances is to show that for a diverse range of 
structures, the k - p  method can generate total energies using a given grid of k-points 
with the introduction of no significant additional errors and at a fraction of the com- 
putational cost of ‘exact methods’. This transformation to a quick and accurate method 
allows one to use very large k-point sets, effectively eliminating those errors due to 
inadequate sampling of the Brillouin zone thus opening the path to calculating truly 
absolute energies. 

The layout of the paper is as follows. In section 2 we describe four errors that may 
arise in a total energy calculation. These are errors in evaluating the charge density and 
in evaluating the eigenvalue sum, and may arise due to either finite sampling of the 
Brillouin zone or due to the use of the k . p method. In sections 3 to 5 we evaluate three 
of these errors for the structures that we have chosen to study. In section 6 we evaluate 
the most serious error of the four and show how the magnitude of the error may be 
reduced by up to two orders of magnitude. In section 7 we present our conclusions. 

The three structures that we will be concerned with are all formed from pure 
aluminium. In each case the nearest-neighbour atomic separation is 2.85 A. The first 
structure is the face centred cubic structure with a four atom cubic unit cell of lattice 
parameter 4.0305 A. The second structure is a line of atoms. The unit cell is primitive 
and tetragonalwithdimensions5.7 X 5.7 X 2.85 ,&.The finalstructureisasquarelattice. 
Againthe unit cellis primitive andtetragonalwithdimensions5.7 X 2.85 x 2.85 ,&. The 
pseudopotential used to represent the aluminium ions is that of Goodwin el al(1990) 
and we use the exchange and correlation energy function of Ceperley and Alder (1980) 
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as parametrized by Perdew and Zunger (1981). Unless stated otherwise, the cut-off 
energy used in the exact calculations in 190 eV. In the k . p  calculations the 19 lowest 
solutions at either k = 0 or k = (l/Za, 1/2b , l /2c)a  are used as a basis, where a ,  band c 
are the dimensions of the particular unit cell. The k-point grids used throughout the 
paper are those of Monkhorst and Pack (1976) where the notation 63 refers to a uniform 
division of the first Brillouin zone into a 6 x 6 X 6 mesh of k-points. We generate the 
density of states and hence the Fermi level and the occupancies of the eigenstates using 
the Gaussian broadening technique developed by Fu and Ho (1983). 

2. Definition of errors relevant to the k . p  total energy method 

In performing a pseudopotential total energy calculation, errors may arise from a 
multitude of sources: from the use of anincomplete basisset for expanding theelectronic 
wavefunctions; from local density approximations to exchange and correlation or from 
an inadequate pseudopotential. It is not these errors that we are concerned with in this 
work. The errors that we are concerned with are those which arise from the consideration 
of too few k-points in the Brillouin zone (finite sampling errors) and those which arise 
from the use of the k . p  approximation to generate eigenstates and eigenvalues (k . p  
errors). 

Throughout this paper, as in our previous paper, we will estimate the total energy of 
a structure by use of the Harris energy functional (Harris 1985), defined by 

i J 

where EH is the Hartree energy, Exc is the exchange-correlation energy, Eion-ion is the 
ion-ion interaction, pxc is the exchange correlation potential, n&) is the input charge 
density, is the ith eigenvalue and w, is the corresponding occupation probability. 
Errorsin theHarrisexpression fortheenerg yare secondorderwith respect todeviations 
in the input charge density from the self-consistent density. 

Even if theHarrisexpression for theenergyisevaluated usingaself-consistent charge 
density, it may still be in error because either the self-consistent charge density used in 
equation ( 1 )  is wrong or because, in spite of using the correct charge density, there is an 
error in the eigenvalue sum. The error in the charge density may arise because too few 
k-points are used to generate a self-consistent charge density; this will be called a “finite 
sampling error in charge density”; or it may arise because the eigenstates that are used 
to generate the charge density are approximate states generated by k * p theory; this will 
be called a “k . p error in charge density”. The error in the eigenvalue sum may also arise 
from two sources. It may either be due to the fact that the eigenvalues are calculated at 
too few k-points, “a finite sampling error in eigenvalue sum”, or it may be due to the 
fact that the eigenvalues used are not exact but those obtained by the k . p method, i.e. 
“a k . p error in the eigenvalue sum”. 

More formally one should define the following. 
(i) The exactsum. For a given input potential, a given cut-off energy and a given grid 

of k-points, the exact sum is defined as the eigenvalue sum obtained by solving at each 
k-point using the full basis of allowed plane waves with energies below the energy cut- 
off. The solutions will not be self-consistent in general. 
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(ii) The k .psum. For a given input potential, a given cut-off energy and a given grid 
of k-points, the k .p sum is defined as the eigenvalue sum obtained by solving at each k- 
point using the k .p method rather than the exact solution referred to above. 

(iii) Theflniresampling error in eigenualue sum. For a given potential, k-point grid 
and cut-off energy, this error is defined as the difference between the exact sum for that 
k-point grid and the exact sum in the case of an infinitely fine k-point grid. 

(iv) The k 'p  error eigenualue sum. For a given potential, k-point grid and cut-off 
energy, this isdefined as the difference between the exact sum for that k-point grid and 
the k . p  sum for that k-point grid. 

(v) The k . p  error in charge density. In general, the number of k-points used to 
generate the charge density (NI) and the number of k-points used to  generate the 
eigenvalue sum (NZ) need not be equal. It is also possible to generate either, neither or 
both the N ,  and N 2  solutions exactly or by the k * p  method. The k ' p  error in charge 
density is the error which arises because the NI solutions used to generate the charge 
density are generated by the k - p  method. Formally, for a given value N: of k-points 
solvedexactly togenerate the eigenvalue sum. it is theerror introduced by generating the 
self-consistent charge density by N ,  k -peigenstatesrather than by NI exact eigenstates. 

(vi) Thefinitesamplingerrorin chargedensity. The finite sampling error in the charge 
density is the error that arises because the charge density is generated by too few (NI) 
exact eigenstates. More formally, for a given number of ( N , )  exact solutions used to 
generate the eigenvalue sum, it is the error introduced by using a finite number (NI) 
rather than an infinite number of exact solutions in order to generate the charge density. 

The two finite sampling errors arise purely due to coarse sampling of the Brillouin 
zone. They are the errors that are general to total energy pseudopotential calculations 
and they can be systematically reduced by finer sampling in k-space. The two k ' p  errors 
are new errors that the k .p method has introduced. Computationally. the k .pmethod 
is several orders of magnitude faster than previous methods which allows one to use 
much larger k-point sets than wouldotherwise be possible. It consequently allowsfinite 
sampling errors to be reduced. It is important to establish that the k ' p  errors can be 
made smaller than the finite sampling errors or the use of such a scheme will not reduce 
the magniude of the error in the total energy. In the next four sections we evaluate each 
of these four errors. We show that if uncorrected the largest of these errors is generally 
the k .perror in the eigenvaluesum. Without correction thiserror would limit thescope 
of k - p  calculations. However, we show how one may reduce this error significantly 
with the result that for k-point grids of interest, the k ' p  errors become negligible in 
comparison with the errors due to  finite k-point sampling. This allows accurate absolute 
total energies to be calculated using the k .p method. 

3. k . p errors in the charge density 

FCC aluminium is rather free-electron like. Hence, the Kohn-Sham eigenstates at dif- 
ferent k-pointsgenerate very similar charge densities. Any problems that are associated 
with error in the charge densities either due to finite sampling or due to k . p  errors are 
far more likely to show up in a less free-electron-like structure. It is for this reason that 
in the next two sections we concentrate on the linear structure and the square lattice. 

In order to evaluate the k .p error in the charge density we perform two calculations 
on each of the twostructures. First we perform anexact Car-Parrinello (1985) calculation 
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Table I.7heR .peigenvaluesumofaZ’gridofk-pointsand thecorresponding totalenergy 
of the line and square lattice using exact and k . p generated potentials. 

Eigenvalue sum for 2’ grid (eV) Total energy (eV) 

Line 
Usingexactpotential -18.31192 -55.66231 
Using k .ppotential -18.43419 -55.662 39 

Square lattice 
Using exact potential -17.88696 
Usingk .ppotential -17.93120 

-56.429 45 
- 56.429 44 

using the modified algorithm of Payne et ai (1986) with a Monkhorst Pack grid of Z3, 
using an energy cut-off of 190 eV for the plane wave basis set and iterating to self- 
consistency. We then perform the same calculation using the 19 lowest bands at k = 0 
to generate k p solutions over the same Z3 Monkhorst Pack grid, again iterating to self- 
consistency. In each case we store the final self-consistent charge density, one exact and 
one produced by the k . p method. In order to achieve a fair comparison between these 
charge densities it is important to treat them in an identical manner. In particular the 
eigenvalue sums must be calculated in the same way. The k .  p charge density is used to 
generate a potential from which the 23 eigenvalue sum is evaluated exactly. The Harris 
expression in each case may then be evaluated by adding an exact eigenvalue sum to the 
other contributions. By this apparently tortuous route we ensure that any difference 
between the two values for the energy is due to differences in charge density and not to 
differences in the methods of generating the eigenvalue sum. The results are shown in 
table 1. Given theexcellent agreement between the two setsof resultswe may confidently 
conclude that k .p  error in the potential produces an error in the total energy of the 
order of eV and is consequently negligible. 

4. Finite sampling error in the charge density 

For the reason outlined in the previous section, we again restrict ourselves to the two 
non-close-packed structures. Strictly speaking the finite sampling error in the charge 
density is defined as the difference between exact calculations as the number of k-points 
used to generate the charge density is changed. In order to save time we estimate this 
error as the difference between k . p  calculations as the number of k-points used to 
generate the charge density is changed. In the previous section it was noted that the k p 
error in the charge density was negligible. The k .perror in eigenvalue sum is primarily 
dependent on the number of points used to generate the eigenvalue sum, N I .  For a fixed 
N z  any k . p  errors will largely cancel. Given these two facts we proceed as follows. 

For each structure we have performed k . p  calculations using a cut-off energy of 
190 eV, using 19 bands at k = 0 and Monkhorst Pack grids of 13, 23, 43, 63, 63, S3, lo3. 
In each case we iterate to self-consistency in the manner referred to in our previous 
paper. In each case the final self-consistent charge density and potential is stored. The 
potentials are then used to generate the 19 lowest exact non-self-consistent solutions at 
k = (1/2n, 1/2b, 1/2c)n and these are used to evaluate k . p  solutions over a Monthorst 
Pack grid of 163. 



8846 I J Robertson and M C Payne 

Table 2. The k . p  eigenvalue sum of a 16’k-point grid and the mrmponding total energy 
for our linear structure (see text), as a function of the size of the grid of k , p k-points used to 
generate the potential. 

Grid for potential Eigenvalue sum for 16’grid (eV) Energy (eV) 

1’ - 18.13428 -56.233 78 
23 -19.03864 -56.26684 
43 -19.31846 -56.28357 
6) - 18.766 58 ~ -56.25577 
8j -18.20438 -56.24630 

103 -18.101 05 -56.24673 

Table 3. The k . p  eigenvalue sum of a 16j k-point grid and the corresponding total energy 
for our square structure (see text). as a function of the size of the grid otk . p k.poinu used 
to generate the potential, 

Grid for potential Eigenvalue sum for 16’ grid (eV) Energy (eV) 
~~~ ~ 

I? - 18.188 96 -57.39776 
2’ -19.01478 -57.51302 
4’ - 16.67125 -57.24737 

83 -16.50346 -57.23968 
IO’ - 16,61608 -57,24413 

6’ -16.36488 -57.236ai 

The eigenvalue sums obtained in each case can be used in equation (1) with the 
charge densities which produced them to generate a series of estimates of the energy. 
The energies are calculated using a fixed number of k-points to generate the eigenvalue 
sum but a variable number of k-points to generate the charge density. The variation of 
the energy with respect to the size of the grid used to generate the charge density gives 
a measure of the finite sampling errors in the charge density. 

Table 2 shows the results for the line of atoms and table 3 the results for the square 
lattice. For the square lattice there is a sharp change in energy as the grid size is increased 
from l3  to 4’. After that the convergence is rather more erratic and for a IO’ grid the 
finite sampling error is still of the order of 0.01 eV. For the line the finite sampling error 
in charge density is less but there is still evidence of significant error for k-point grids as 
large as 10’. 

The conclusion of this and the previous section is that use of the k . p method is fully 
justifiedforgeneratingchargedensities. Anyextraerrorsintroduced by the k . pmethod 
in charge density are negligible compared to  the finite sampling errors that the method 
is attempting to overcome. 

5. Finite sampling error in the eigenvalue sum 

This error was considered in paper 1. It is important to reconsider it here since the 
magnitude of the error was only studied for one structure and it was evaluated with 
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Table 4. The finite sampling error in eigenvalue sum for the three structures. The potential 
in each case is that self-consistent potential generated by an X3 grid of k ' p  k-points. ?be 
'grid' column refers to the grid dimension over which the eigenvalue sum is evaluated. 

Grid Eigenvalue sum for line (eV) Eigenvalue sum for square lattice (eV) Eigenvalue sum for FCC (eV) 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
40 
48 
56 
61 

-17.639 13 
- 18.120 05 
-18.04586 
-18.19395 
- 18.22886 
-18.23773 
-18.22022 
-18.20438 
-18.19247 
-18.20534 
-18.21450 
-18.21593 
-18.21321 
- 18.20753 
-18,20363 
-18.20785 
-18,20851 
-18.21135 
-18.20906 
- 18.209 29 

- 15.78747 
-16.11274 
-16.35061 
-16.41868 
-16.37836 
-16.38987 
-16.40495 
-16,403 46 
-16.38951 
-16.39795 
- 16.402 37 
-16.39792 
-16.396 35 
-16.39946 
- 16.399 78 
-16.397 20 
-16.397 33 
-16.398 17 
- 16.39808 
- 16.39826 

-35.12744 
-35.69591 
-35.91294 
-35.983 56 
- 35.983 55 
-35.955 65 
-35.955 02 
-35.96136 
-35.962 52 
-35.960 22 
-35.95540 
-35.95702 
-35.95866 
-35.95879 
-35.95777 
-35.95761 
-35.95800 
-35.95743 
-35.95761 
-35.95750 

relatively small k-point sets. The error is defined as the difference in the exact eigenvalue 
sum for finite and infinite grid. 

Finite sampling errors in the eigenvalue sum are simply the result of numerically 
integrating the expression 

eigenvalue sum = EN(E)w(E) de. (2) I 
Where N(E) is the density of states at energy E and W(E) is the Fermi function which 
should in principle be evluated at absolute zero but in practice is evaluated nearer room 
temperature. 

Although the precise value of an eigenvalue sum depends on the exact N ( E ) ,  its 
general convergence with respect to number of sampling points should be insensitive to 
small changes in that density of states. For this reason it is possible to investigate the 
finite sampling errors in the exact eigenvalue sum by the significantly faster procedure 
of investigating the finite sampling errors in the k ' p  sum. This has been done for the 
three structures under consideration. In each case we take the self-consistent charge 
density produced by an 83 grid of k * p  points (see section 4) and use this potential to 
generate the 19 lowest exact solutions at k = (la, 16,Ic)a. These solutions are then used 
to generate the k . p eigenvalue sum over grids ranging from z3 to 643. The results are 
displayed in table 4. 

The rate of convergence differs for each of the structures studied. This demonstrates 
that relying on finite sampling errors to cancel for different structures is unlikely to be 
particularly successful. The convergence is worst for the line of atoms with the finite 
sampling error for a grid of 163 k-points is still of one order of 0.01 eV. 
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TableS. The variationof~.psum,exactsumandk,perror withcut-offenergyforihefcc 
structure. The number of allowed plane waves (NPW) is also shown for each energy. 

~~ ~ 

Emp (eV) NPW k . p sum (eV) Exact sum (eV) k . p error (mev) 

30 27 
40 33 
50 57 
M) 81 
70 81 
80 93 
90 123 

100 147 
110 171 
120 179 
130 251 
190 389 

-29.85531 
-30.12406 
-31.491 17 
-32.21295 
-32.21295 
-32.731 58 
-33.5.49 22 
-34.101 74 
-34.471 71 
-34.53741 
-35.57279 
-35.98356 

-29.89777 
-30.17364 
-31.59048 
-32.31775 
- 32.3 17 75 
-32.83976 
-33.65904 
-34.21351 
-34.58389 
-34.64946 
-35.689 07 

42.46 
49.58 
99.31 

104.80 
104.80 
108.18 
109.82 
111.77 
112.18 
111.99 
116.28 

6. k . p error in the eigenvalue sum 

Investigations of this error in 1 were restricted to the case of FCC aluminium using a cut- 
off energy of only 100 eV. Results of that investigation suggested that the error was of 
the order of 0.03 eV per atom (0.12 eV for a four-atom unit cell). This is larger than any 
of the other errors dealt with in the previous sections and, as it stands, puts an upper 
limit on the accuracy of the k * p  method which restricts it to being a quick method for 
obtaining approximate results. In this section we show how to reduce this error by up 
to two orders of magnitude. With this modification the k .p total energy method is 
transformed to a quick method for calculating absolute energies to high accuracy. 

Our method is to calculate the k p eigenvalue sum, the exact eigenvalue sum and 
hence the k p error in eigenvalue sum, for a series of cut-off energies far below the cut- 
off energy that we actually wish to use. (Given the low cut-off energy, the time taken to 
dothisisverysmall.) Wethentry torelatethek.perrorineigenvaluesumand thek.p 
eigenvalue sum by a function of the form 

k .p error in eigenvalue sum 

= A  + B(k -p  eigenvalue sum) + C(k *p  eigenvalue sum2 + . . .). (3) 

(Note that the k .p error as a function of the plane wave cut-off is a series of steps and 
as such would not be amenable to fitting to a polynomial form). We use this function (3) 
to estimate the k . p error in eienvalue sum for the high cut-off energy that we actually 
wish to use. By adding this correction term to the k - p  eigenvalue sum for that cut-off 
energy, we hope to obtain a very accurate value for the exact eigenvalue sum. 

The viability of this method rests on the extent to which the function (3) fitted at low 
cut-off energies may be extrapolated to the high cut-off energies which we require. To 
assess this method we demonstrate its use on the three structures under consideration. 

Foreachstructure we start by calculating the self-consistent charge density generated 
by an 83 grid of k . p k-points as described in section 4. We use this charge density and a 
series of energy cutoffs below 190 eV to generate the 19 lowest exact solutions at k = 
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Table 6. The variation of k . p  sum, exact sum and k 'p error with cut-off energy for the 
square lattice structure. The number of allowed plane waves (NPW) is also shown for each 
energy. 

Em, (eV) NPW k .  p sum (eV) Exact sum (eV) k p error (meV) 
~~~ 

30 
40 
50 
60 
70 
80 
90 

100 
110 
1 20 
130 
190 

17 -14.36965 
29 -14.68828 
39 -15.01340 
47 -15.23671 
55 -15.39585 
77 -15.73998 
77 -15.73998 
117 -16.12070 
117 -16.12070 
151 -16.29741 
151 -16.29741 
297 -16.41868 

-14.253 84 -115.81 
-14.697 19 8.91 
-15.03252 19.12 
-15.261 19 2 . 4 8  
-15.421 90 26.05 
-15.77041 30.43 
-15.77041 30.43 
-16.15523 34.53 
-16.15523 34.53 
- 16.33290 35.49 
- 16.33290 35.49 

Table 7. The variation of k ' p  sum, exact sum and k . p error with cut-off energy for the line 
structure. The number of allowed plane waves (NPW) is also shown for each energy. 

Ec, (eV) NPN' k .psum (eV) Exact sum (eV) k 'perror (meV) 

30 
40 
50 
60 
70 
80 
90 

1M1 
110 
120 
130 
190 

39 
51 
79 
87 
119 
157 
1 69 
225 
233 
2 n  
301 
583 

-16.04579 
-16.242 34 
- 16.667 09 
-16.77461 
-17.15446 
- 17.475 17 
-17.561 07 
-17.849 05 
- 17.882 40 
-18.003 25 
-18.054 32 
-18.19395 

-16,05859 12.80 
-16.265 47 23.13 
-16.711 15 44.06 
- 16.82031 45.70 
-17.201 79 47.33 
-17.52355 48.38 
- 17.60993 48.86 
-17.89904 49.99 
- 17.93244 50.04 
-18.05352 50.27 
- 18,10472 50.40 

(1/2a, 1/2b, 1/2c)3c and hence k .  p eigenvalue sums over an g3grid. For the same charge 
density, the same g3 grid and the same series of cut-off energies we evaluate the exact 
eigenvalues sums. The difference between these two values for the sums is of course the 
k * p error in eigenvalue sum. The results of this process are displayed in tables 5,6 and 
7 and in figures 1 ,2  and 3. 

Figures 1,2and3showsthevariationofthek.perrorasafunctionof thek-psum. 
An increase in the cut-off energy decreases the k . p sum as a direct consequence of the 
variational theorem. Similarly an increase in the cut-off energy tends to increase the 
k - p  error since the number of bands used to generate k . p  solutions is fixed at 19 
whereas the number of plane waves used to generate the exact solutions is enlarged. The 
magnitude of both of these effects tends to progressively decrease at higher energies. 
The k . p  error tends to decrease most rapidly, reflecting the diminishing importance of 
high-energy bands in the k ' p  sum, and thus producing a saturation in the curve. All 
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Figure 1. A plot of k ' p  error against k .  p sum at various cut-oif energies for a line of 
aluminium atoms. The vertical dotted line indicates the k p sum corresponding to 190 eV. 
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three curves (figures 1,2,3)  show these effects, although the degree to which saturation 
has occurred does differ. The saturation is the most pronounced in figure 1 with the k . p 
error using a cut-off of 60 eV within 0.005 eV of the k - p  error using a cut-off of 130 eV. 
In fact the convergence of the k . p error per atom is best for the four atom FCC (figure 2) 
and even for the square lattice (figure 3) the k .perror at 80 eV is within 0.005 eV of the 
k .perror at 130 eV. 

For each of the figures 1-3, the abscissa of the point generated by the cut-off energy 
of 190 eV is known since it is the k ' p  eigenvalue sum for this energy, and is recorded in 
table 4. It is the corresponding ordinate that we wish to estimate by extrapolation. The 



The k ' p  total energy calculation method 

- 
8851 

6.5 
. . . . . . . . . . . . . . . . . . . . . . .  
I4 11.5 I5 15.5 16 

*.p sum /.v 

Figure3. Aplotofk .perrotagainst k .psumatvariouscut-offenergiesforasquarelattice 
ofaluminiumatoms, The verticaldottedline indicatesthek .psummrrespondingto 190 eV. 

briefest glance at the smoothness of each of the curves reveals the viability of an 
extrapolation scheme. Our choice of the k ' p  eigenvalue sum as the argument in our 
expansion (3), also ensures that the distance over which we must extrapolate isrelatively 
small. 

The crudest method of estimating the k . p  error is a zeroth order approximation. 
That is simply using the k ' p  error at some low energy to estimate the k . p  error at 
190 eV. We generate a better estimate by use of a first-order approximation. 

For the line of atoms use of the data for cut-offs of 60 and 70 eV to linearly extra- 
polate to the k * p  error for a cut-off of 130 eV gives a k . p  error for that energy of 
51.19meV as compared to the true value of 50.40 meV. That is a discrepancy of 
around 1 meV. Extrapolating from the point generated by the 70 eV cut-off to that 
generated by the 130eV cut-off represents an extrapolation in the k - p  sum of 
0.851 73 eV (= 18.053 52 eV - 17.201 79 e.V). The extrapolation of the k . p  sum 
required to reach the point generated by the energy cut-off of 190 eV is only slightly 
furtherat0.99216eV(=18.19395eV - 17.20179eV)sowemaytakeavalueoflmeV 
as a fair indication of the error involved in linearly extrapolating to the 190 eV cut-off. 

For thenxstructure useof the data for cut-offsof80 and90 eV tolinearly extrapolate 
to the k . p  error for a cui-off of 130 eV gives a k . p error for that energy of 113.87 meV 
as compared to the true value of 116.28 meV, i.e. a discrepancy of under 3 meV for a 
four-atom unit cell. Again extrapolation to an energy cut-off of 190 eV is only slightly 
further so we may take this error of under 1 meV per atom as the error involved in 
linearly extrapolating to the 190 eV cut-off. 

The square lattice is the most difficult case. Linear extrapolation using the data at 
cut-offs of 60 and 70 eV gives a k . p error at 130 eV of 34.94 meV as compared to the 
true value of 35.49 meV. The level of this agreement is slightly fortuitous since the 
extrapolated value using the data at 70 and 80 eV gives the slightly inferior estimate of 
37.52 meV. 

In all cases then, even a crude linear extrapolation scheme of data at a low cut-off 
energy can reduce the k - p  error in eigenvalue sum to around 0.001 eV per atom i.e. by 
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up totwoordersof magnitude.Thisisanorderof magnitudelessthan the finitesampling 
errors in the eigenvalue sum. In this context it may be concluded that the k * p  error in 
eigenvalue sum has been reduced to a level of relative insignificance. 

It should bestressed that our comments here are intendedtodemonstrate thegeneral 
feasibility of an extrapolation strategy. The precise values of the lower cut-off energies 
that are used will vary from situation to situation. In practice one would like a method 
which allowed the predetermination of two cut-off energies at which evaluation of the 
k - p  error would provide adequate data for linear extrapolation. That is two cut-off 
energies for which the k .perror is near saturation. One quick way to achieve this would 
be to evaluate the k - p  error in the eigenvalues at a single k-point at a series of cut-off 
energies. The cut-offenergyat whichthisk .perrorsaturates being indicativeof thecut- 
off energy for which the full k .perror saturates. Since evaluatingeigenvalues at asingle 
k-point is much quicker than evaluating them over a whole grid, this procedure requires 
negligible extra time. The time taken for the whole k . perror determination is therefore 
dominated by that time to generate two exact sums over the Brillouin zone non-self- 
consistently and at a low cut-off energy. As has been said before, this time is insignificant 
in comparison with the time taken for a full self-consistent solution at the high cut-off 
energy. 

Finally we note that this k. p error evaluation ran most smoothly for the structure 
for which the plane wave basis set was largest. This is an extremely desirable state of 
affairs given that it is these large structures for which the k - p  method is required, 
traditional methods being too time consuming. 

7. Cnnclusions 

The two finite sampling errors general to any method of total energy calculation have 
been evaluated as a function of sampling density for three diverse aluminium structures. 
The errors have been shown to be significant even for relatively large k-point sets 
confirming that extremely time consuming calculations would be required to obtain 
accurate absolute energies. One error associated with the k .  p method has been shown 
to be negligible. The other error associated with the k . p  method has been shown to be 
large but a technique has been developed which allows even this error to be reduced to 
a level at which it is insignificant. The modified k ‘ p  total energy method introduces no 
significant errors and given the fast computational speed of the method it is possible to 
use k-point sets several orders of magnitude larger than previously possible, thus 
allowing finite sampling errors to be eliminated. 
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